Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 192(3): 315-23, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25945397

RESUMO

RATIONALE: Lung-protective ventilatory strategies have been widely used in patients with acute respiratory distress syndrome (ARDS), but the ARDS mortality rate remains unacceptably high and there is no proven pharmacologic therapy. OBJECTIVES: Mechanical ventilation can induce oxidative stress and lung fibrosis, which may contribute to high dependency on ventilator support and increased ARDS mortality. We hypothesized that the novel cytokine, midkine (MK), which can be up-regulated in oxidative stress, plays a key role in the pathogenesis of ARDS-associated lung fibrosis. METHODS: Blood samples were collected from 17 patients with ARDS and 10 healthy donors. Human lung epithelial cells were challenged with hydrogen chloride followed by mechanical stretch for 72 hours. Wild-type and MK gene-deficient (MK(-/-)) mice received two-hit injury of acid aspiration and mechanical ventilation, and were monitored for 14 days. MEASUREMENTS AND MAIN RESULTS: Plasma concentrations of MK were higher in patients with ARDS than in healthy volunteers. Exposure to mechanical stretch of lung epithelial cells led to an epithelial-mesenchymal transition profile associated with increased expression of angiotensin-converting enzyme, which was attenuated by silencing MK, its receptor Notch2, or NADP reduced oxidase 1. An increase in collagen deposition and hydroxyproline level and a decrease in lung tissue compliance seen in wild-type mice were largely attenuated in MK(-/-) mice. CONCLUSIONS: Mechanical stretch can induce an epithelial-mesenchymal transition phenotype mediated by the MK-Notch2-angiotensin-converting enzyme signaling pathway, contributing to lung remodeling. The MK pathway is a potential therapeutic target in the context of ARDS-associated lung fibrosis.


Assuntos
Citocinas/sangue , Fibrose Pulmonar/fisiopatologia , Respiração Artificial , Síndrome do Desconforto Respiratório/fisiopatologia , Transdução de Sinais/fisiologia , Estresse Mecânico , Animais , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Midkina , Fibrose Pulmonar/sangue , Síndrome do Desconforto Respiratório/sangue
2.
BMC Pulm Med ; 14: 135, 2014 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25108547

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterized by overwhelming inflammatory responses and lung remodeling. We hypothesized that leukocyte infiltration during the inflammatory response modulates epithelial remodeling through a mechanism of epithelial-mesenchymal transition (EMT). METHODS: Human lung epithelial cells were treated for 30 min with hydrochloric acid (HCl). Human monocytes were then cocultured with the epithelial cells for up to 48 h, in the presence or absence of blocking peptides against lymphocyte function-associated antigen-1 (LFA-1), or tyrphostin A9, a specific inhibitor for platelet-derived growth factor (PDGF) receptor tyrosine kinase. RESULTS: Exposure of lung epithelial cells to HCl resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and production of interleukin (IL)-8 at 24 h. The expression of the epithelial markers E-cadherin decreased while the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) increased at 24 h and remained high at 48 h. The addition of monocytes augmented the profiles of lower expression of epithelial markers and higher mesenchymal markers accompanied by increased collagen deposition. This EMT profile was associated with an enhanced production of IL-8 and PDGF. Treatment of the lung epithelial cells with the LAF-1 blocking peptides CD11a237-246 or/and CD18112-122 suppressed monocyte adhesion, production of IL-8, PDGF and hydroxyproline as well as EMT markers. Treatment with tyrphostin A9 prevented the EMT profile shift induced by HCl stimulation. CONCLUSIONS: The interaction between epithelial cells and monocytes enhanced epithelial remodelling after initial injury through EMT signalling that is associated with the release of soluble mediators, including IL-8 and PDGF.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Transição Epitelial-Mesenquimal , Monócitos , Actinas/metabolismo , Células Epiteliais Alveolares/fisiologia , Antígeno CD11a , Antígenos CD18 , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Humanos , Ácido Clorídrico/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-8/efeitos dos fármacos , Interleucina-8/metabolismo , Antígeno-1 Associado à Função Linfocitária/efeitos dos fármacos , Peptídeos/farmacologia , Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Tirfostinas/farmacologia , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...